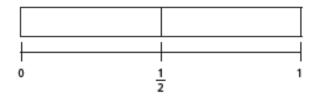
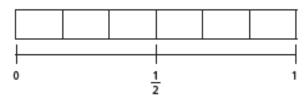
Equivalent fractions (2)

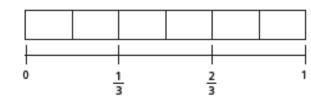

Day 1

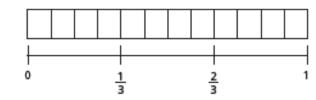
Shade the bar models to represent the fractions.


a) Shade $\frac{1}{2}$ of the bar model.

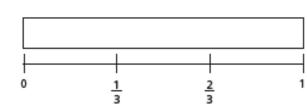
b) Shade $\frac{2}{4}$ of the bar model.

c) Shade $\frac{3}{6}$ of the bar model.


d) What do you notice?

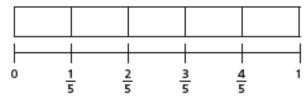


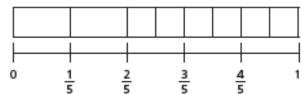
Shade $\frac{2}{3}$ of each bar model.

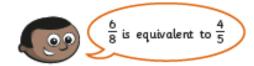

a)

b)

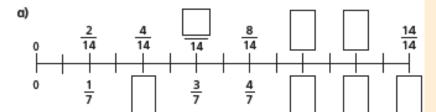
c)

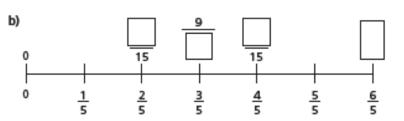

d) Use your answers to parts a), b) and c) to complete the equivalent fractions.


$$\frac{2}{3} = \frac{}{6} = \frac{8}{} = \frac{}{15}$$



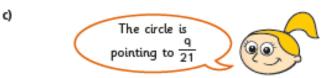
Mo is finding equivalent fractions.



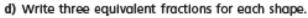


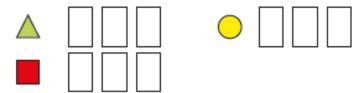
Do you agree with Mo? _____

Explain your answer.


Here is a number line.

a) What fraction is each shape pointing to?




b) A circle is halfway between the triangle and the square.
Draw the circle on the number line.

Do you agree with Eva? _____

Show how you worked this out.

Compare answers with a partner.

Day 2

Shade the shapes to help you complete the equivalent fractions.

α)

$$\frac{1}{3} = \frac{}{}$$

b)

$$\frac{1}{2} = \frac{\Box}{\Box}$$

c)

d)

$$\frac{3}{4} = \frac{}{}$$

Use the fraction wall to complete the equivalent fractions.

	1 3	<u>l</u> }			1 3	<u>1</u>			1	<u>L</u>	
1 6			<u>1</u>	<u>1</u> 6			<u>1</u>	1 6			<u>1</u>
<u>1</u> 9	1	<u>-</u>	<u>1</u> 9	<u>1</u> 9	1	9	<u>1</u> 9	<u>1</u> 9	1	<u> </u>	<u>1</u> 9

a)
$$\frac{1}{3} = \frac{ }{6}$$

d)
$$\frac{2}{3} = \frac{6}{3}$$

b)
$$\frac{1}{3} = \frac{9}{9}$$

e)
$$\frac{4}{6} = \frac{6}{1}$$

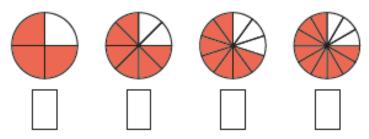
c)
$$\frac{2}{3} = \frac{4}{1}$$

f)
$$\frac{1}{3} = \frac{}{6} = \frac{}{9}$$

Draw a picture to show that one quarter is equivalent to two eighths.

Use the fraction wall to decide whether the fractions are equivalent or not.

1 2					1/2				
1/4			<u>1</u>		1/4				
<u>1</u> 5		· !	1 5	!	1 5	1	5	1 5	<u>;</u>
1 10	1 10	1 10	1 10	1 10	1 10	1 10	1 10	1 10	1 10


Complete the sentences using is or is not.

- a) $\frac{1}{2}$ equivalent to $\frac{2}{4}$
- b) $\frac{1}{4}$ equivalent to $\frac{2}{10}$
- c) $\frac{1}{2}$ equivalent to $\frac{5}{10}$
- d) $\frac{3}{10}$ equivalent to $\frac{2}{5}$
- e) $\frac{4}{5}$ equivalent to $\frac{8}{10}$
- f) $\frac{3}{4}$ equivalent to $\frac{4}{5}$

Write some sentences of your own and ask a partner to fill in the gaps.

g) What	iraction	OI	each shape	IS	snaaea:

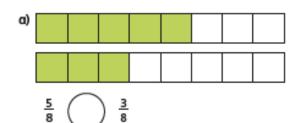
b) Use the fractions in part a) to complete the sentences.

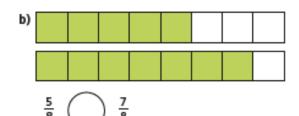
is equivalent to
Is equivalent to
is not equivalent to
is not equivalent to

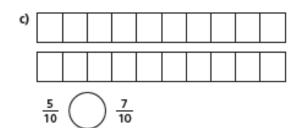
Compare answers with a partner.

Write as many equivalent fractions as you can.

What is the same about all the fractions you have written?






Day 3

Write <, > or = to compare the fractions.
Use the bar models to help you.

Write <, > or = to compare the fractions.

d) $\frac{6}{7}$ $\frac{2}{7}$

b) $\frac{2}{5}$ $\left(\right)$

e) $\frac{6}{13}$ $\frac{12}{13}$

c) $\frac{2}{7}$ $\left(\right)$ $\frac{6}{7}$

 $\mathfrak{h} = \frac{13}{15} \bigcirc \frac{13}{15}$

Here are some bar models.

1
1/4
- -

- a) Shade the bar models to represent the fractions.
- b) Write < or > to compare the fractions.
 Use the bar models to help you.

1	
4)

1	1	1
5		3

$$\frac{1}{3}$$

$$\frac{1}{4}$$

$$\frac{1}{5}$$
 $\left(\right)$ $\frac{1}{2}$

- What could the missing numerators and denominators be? Give three examples for each.
 - a) $\frac{1}{5} < \frac{1}{5}$ $\frac{1}{5} < \frac{1}{5}$

- b) $\frac{1}{5} < \frac{1}{5}$

Jack is comparing fractions.

 $\frac{1}{8}$ is greater than $\frac{1}{4}$ because 8 is greater than 4

Draw bar models to show that Jack is wrong.

Sort the fractions into the circles.

greater than $\frac{1}{6}$	less than $\frac{1}{6}$
)(

Complete the sentences using the word bank.

denominator

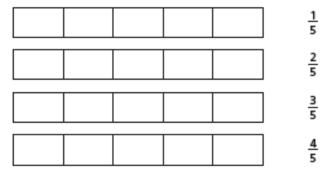
greater

smaller

a) When fractions have the same denominator, the greater

the ______ the _____ the fraction.

b) When fractions have the same numerator, the greater the


_____, the _____ the fraction.

Order fractions

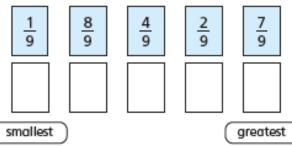
Day 4

a) Shade the bar models to represent the fractions.

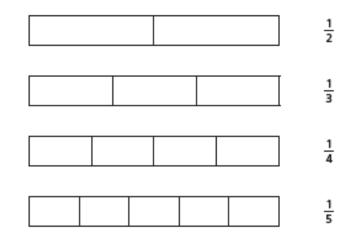
b) What do you notice?

numerator

c) Complete the sentence.

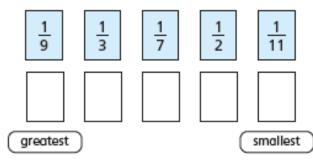

When fractions have the same ______, the _____ the _____ the _____ the fraction.

greater


smaller

Write the fractions in order, starting with the smallest.

denominator


a) Shade the bar models to represent the fractions.

- b) What do you notice?
- c) Complete the sentence.

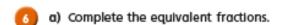
when fractions have the same ______, the _____ the fraction.

Write the fractions in order, starting with the greatest.

1/5

<u>4</u> 15 <u>2</u> 3 <u>7</u> 15

I cannot order
these fractions because the
numerators and denominators
are different.


I think I can use equivalent fractions to help me.

Who do you agree with?

Dora

Talk about it with a partner.

$$\frac{3}{5} = \frac{6}{1}$$

$$\frac{2}{9} = \frac{6}{1}$$

$$\frac{1}{7} = \frac{6}{\boxed{}}$$

b) Write the fractions in order, starting with the greatest.

<u>6</u> 9 <u>3</u> 5 <u>1</u> 7

<u>2</u> 9

greatest

smallest

<u>1</u> 7

<u>2</u> 21 <u>4</u> 35 <u>2</u>

a)

I am going to make the numerators the same.

Use Dexter's method to put the fractions in order.

b)

I am going to make the denominators the same.

Alex

Use Alex's method to put the fractions in order.

c) Which method do you prefer? Talk about it with a partner.

